10 DUAL USE OF MALIGNANT EFFUSIONS FOR GENOTYPING AND DRUG SCREENING IN PERSONALIZED THERAPY OF LUNG CANCER PATIENTS

Silvia Garcia-Roman^{1*}, Cristina Aguado Esteban^{1*}, Núria Jordana Ariza¹, Mónica Garzón¹, Andrés Aguilar², Cristina Rodríguez¹, Florencia Garcia Casabal³, Ivana Sullivan^{2,4}, Alejandra Romano⁴, Irene Moya⁵, Remei Blanco⁶, Verónica Pereira⁷, Maria Gonzalez Cao², Rafael Rosell^{2,8}, Clara Mayo de las Casas¹, Miguel A. Molina-Vila¹.

*These authors contributed equally, ¹Pangaea Oncology S.L., Dexeus Universitary Hospital, Barcelona, Spain, ²Instituto Oncológico Dr. Rosell Dexeus Universitary Hospital, Barcelona, Spain, ³Instituto Oncológico Dr. Rosell, Centro Médico Teknon, Barcelona, Spain, ⁴Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, ⁵Instituto Oncológico Dr. Rosell, Hospital General Catalunya, San Cugat, Spain, ⁶Hospital Terrassa, Terrassa, Spain, ⁷Instituto Oncológico Dr. Rosell, Hospital Sagrat Cor, QuirónSalud, Barcelona, Spain, ⁸Catalan Institute of Oncology and Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain

BACKGROUND

Malignant effusions (MEs) such as ascites, pleural or pericardiac effusions are common in many tumors, either at diagnosis and/or at progression to therapies and have been associated with a poorer prognosis in lung cancer. MEs contain circulating free DNA/RNA (cfDNA/RNA), representing an excellent source of material for tumor genotyping. In addition, pure tumor primary cultures (PTPCs) can be established from the tumor cells present in MEs. These cultures allow the in vitro testing of antitumor drugs and, due to their similarity with the patient's tumor, might be of help in treatment selection. **43 MEs**

OBJECTIVES

• In this study, we aimed to incorporate MEs collection from lung cancer (LC) patients into the routine clinical practice in order to determine clinically relevant alterations and to initiate PTPCs to be used in drug testing.

METHODS

MEs from LC patients of the hospitals participating in the study were systematically collected, volumes ranged from 5 to 5,000 mL. Cells were isolated by centrifugation of the entire MEs volume if needed, erythrocytes removed and the remaining cells

cultured. PTPCs and ME supernatants were genotyped using a 30-gene NGS panel and gene expression was analyzed using a commercial panel containing 770 mRNA hybridization probes. Cells were treated with specific drugs depending on their molecular alterations, viability was determined by MTT.

RESULTS

Figure 1: Heatmap of alterations found in MEs genotyped. Mutations, gene amplifications or fusions were detected in 38/43 (84.4%). In red are the patients from which we have paired tissue samples, in all the cases we had coincident alterations.

Alterations	Gene	P0-1	C-04	PO-3	PO-4	PO-5	9-0d	P0-7	PO-8	6-0d	PO-10	PO-11	PO-12	PO-13	PO-14	PO-15	PO-16	PO-17	PO-18		PO-22	PO-24	PO-25	PO-26	PO-27	PO-28	PO-29	PO-30	PO-31	PO-32	PO-33	PO-34	PO-35	PO-36	PO-37	PO-38	PO-39	PO-40	PO-41	PO-42	PO-43
	KRAS																																								
	EGFR																																								
	BRAF																																								
	TP53																																								
	ARID1																																								
	STK11																																								
SL	FAT1																																								
ation	MET																																								
Auta	FGFR1																																							ļ!	
2	BRAF																																							ļ!	
	RET																																								
	KEAP1																																								
	ΡΙΚ3ϹΑ																																								
	POLE																																								
	ERBB4																																								
	SETD2																																								
ions	EML4-ALK:E6:A20																																								
Fus	SDC4-ROS1:S2:R32																																								
	MET																																								
SL	МҮС																																								
ntior	BRAF																																								
ifica	NRAS																																								
hpl	EGFR																																								
																																	Т					T			

Table 1: Characteristics of the fluids analyzed in the project.

Fluid Charactaristics	Total of samples	PTPCs
FILIO CHARACLERISTICS	n=43	n=10
Type of fluid		
Pleural effusion (MPE)	40 (93 %)	10 (100.0 %)
Ascites	3 (7 %)	0 (0.0 %)
Cytology (presence of tumor cells)		
Positive	6 (14.0 %)	3 (30 %)
Negative	0 (0.0 %)	0 (0.0 %)
ND	37 (86.0%)	7 (70.0 %)
Histology		
Adenocarcinoma	42 (97.7 %)	10 (100.0 %)
Squamous Cell Carcinoma	1 (2.3 %)	0 (0.0 %)
Paired blood or FFPE samples		
Yes	10 (23.3 %)	7 (70.0 %)
No	33 (76.7 %)	3 (30 %)
Collection time		
Baseline	17 (39.5 %)	5 (50.0 %)
Progression	17 (39.5 %)	4 (40.0 %)
ND	9 (20.9 %)	1 (10.0 %)
Clinically relevant alterations		
Detected	38 (88.4 %)	9 (90.0 %)
Not detected	5 (11.6 %)	1 (10.0 %)
	3 (11.0 /0)	1 (10.0 70)

Table 2: Characteristics and cell viability of the 5 PTPCs tested by MTT.

Sample	Fluid	Primary tumor	Basal/Progression	Progression to	Alterations	IC ₅₀ (μM)
PO-12	Pleural		Basal	_	MET polisomy	0.8 (cisplatin)
	ricurar		Dasar			> 300.0 (pemetrexed)
	Dloural		Pacal	_	EGFR	15.0 (cisplatin)
PU-30	Pleural	Lung ADC	DdSdl		p.S768_D770dup	300.0 (pemetrexed)
					MET amp	
PO-9	Pleural	Lung ADC	Progression	Tepotinib	MET p.D1228N/H	4.7 (tepotinib)
					and p.Y1230H	
PO-11	Pleural	Lung ADC	Progression	Tepotinib	MET amp; NRAS amp	4.5 (tepotinib)
PO-32	Pleural	Lung ADC	Progression	Osimertinib	EGFR p.L858R	>10.0 (osimertinib)

Figure 3: Micrographs of primary cell cultures. (A) PTPCs from patients, PO-12 and PO-38, at baseline and (B) PTPCs derived from patients PO-9 and PO-32 who progressed to treatment.

(B) PO-32 **PO-9**

Figure 2: Dose-response plots of the PTPCs in Table 2 to selected drugs. (A) Baseline PTPCs treated with chemotherapeutic agents (B) PTPCs at progression treated with the targeted therapies received by the corresponding patients, PC9 and EBC-10 has been used as controls.

Figure 4: Cell viability of PO-38 treated with possible treatments to be used after chemotherapy progression. (A) dose-response plots and (B) IC_{50} values of PO-38 to selected inhibitors.

PO-12 was treated with carboplatin and pemetrexed with partial response during 6 months. PO-38 was treated with carboplatin and pemetrexed with stable disease from July 2023.

OR INSTITUTO ONCOLÓGICO ROSELL

CONCLUSIONS

Gecp

